Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.13.22283391

ABSTRACT

Background Sleep disturbance is common following hospitalisation both for COVID-19 and other causes. The clinical associations are poorly understood, despite it altering pathophysiology in other scenarios. We, therefore, investigated whether sleep disturbance is associated with dyspnoea along with relevant mediation pathways. Methods Sleep parameters were assessed in a prospective cohort of patients (n=2,468) hospitalised for COVID-19 in the United Kingdom in 39 centres using both subjective and device-based measures. Results were compared to a matched UK biobank cohort and associations were evaluated using multivariable linear regression. Findings 64% (456/714) of participants reported poor sleep quality; 56% felt their sleep quality had deteriorated for at least 1-year following hospitalisation. Compared to the matched cohort, both sleep regularity (44.5 vs 59.2, p<0.001) and sleep efficiency (85.4% vs 88.5%, p<0.001) were lower whilst sleep period duration was longer (8.25h vs 7.32h, p<0.001). Overall sleep quality (effect estimate 4.2 (3.0-5.5)), deterioration in sleep quality following hospitalisation (effect estimate 3.2 (2.0-4.5)), and sleep regularity (effect estimate 5.9 (3.7-8.1)) were associated with both dyspnoea and impaired lung function (FEV1 and FVC). Depending on the sleep metric, anxiety mediated 13-42% of the effect of sleep disturbance on dyspnoea and muscle weakness mediated 29-43% of this effect. Interpretation Sleep disturbance is associated with dyspnoea, anxiety and muscle weakness following COVID-19 hospitalisation. It could have similar effects for other causes of hospitalisation where sleep disturbance is prevalent.


Subject(s)
Anxiety Disorders , Lung Diseases , Dyspnea , Muscle Weakness , COVID-19 , Sleep Wake Disorders
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.09.22279759

ABSTRACT

Background Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. Methods Plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. Findings Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months. Nasal and plasma anti-S IgG remained elevated for at least 12 months with high plasma neutralising titres against all variants. Of 180 with complete data, 160 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal. Samples 12 months after admission showed no association between nasal IgA and plasma IgG responses, indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. Interpretation The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.06.22272747

ABSTRACT

Introduction: Microvascular abnormalities and impaired 129Xe gas transfer have been observed in patients with COVID 19. The progression of pathophysiological pulmonary changes during the post acute period in these patients remains unclear. Methods: Patients who were hospitalised due to COVID 19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25 and 50 weeks after hospital admission. The imaging protocol included: ultra short echo time, dynamic contrast enhanced lung perfusion, 129Xe lung ventilation, 129Xe diffusion weighted and 129Xe 3D spectroscopic imaging of gas exchange. Results: 9 patients were recruited and underwent MRI at 6 (n=9), 12 (n=9), 25 (n=6) and 50 (n=3) weeks after hospital admission. At 6 weeks after hospital admission, patients demonstrated impaired 129Xe gas transfer (RBC:M) but normal lung microstructure (ADC, LmD). Minor ventilation abnormalities present in four patients were largely resolved in the 6 to 25 week period. At 12 week follow up, all patients with lung perfusion data available (n=6) showed an increase in both pulmonary blood volume and flow when compared to 6 weeks, though this was not statistically significant. At 12 and 25 week follow up, significant improvements in 129Xe gas transfer were observed compared to 6 week examinations, however 129Xe gas transfer remained abnormally low. Conclusions: This study demonstrates that multinuclear MRI is sensitive to functional pulmonary changes in the follow up of patients who were hospitalised with COVID 19. Persistent impairment of xenon transfer may represent a physiological mechanism underlying ongoing symptoms in some patients and may indicate damage to the pulmonary microcirculation.


Subject(s)
Microvascular Angina , Pneumonia , Pneumonia, Ventilator-Associated , COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.24.21262336

ABSTRACT

Neutrophil extracellular traps (NETs) are web-like DNA and protein lattices which are expelled by neutrophils to trap and kill pathogens, but which cause significant damage to the host tissue. NETs have emerged as critical mediators of lung damage, inflammation and thrombosis in COVID-19 and other diseases, but there are no therapeutics to prevent or reduce NETs that are available to patients. Here, we show that neutrophils isolated from hospitalised patients with COVID-19 produce significantly more NETs in response to LPS compared to cells from healthy control subjects. A subset of patients were captured at follow-up clinics (3-4 month post-infection) and while LPS-induced NET formation is significantly lower at this time point, it remains elevated compared to healthy controls. LPS- and PMA-induced NETs were significantly inhibited by the protein kinase C (PKC) inhibitor ruboxistaurin. Ruboxistaurin-mediated inhibition of NETs in healthy neutrophils reduces NET-induced epithelial cell death. Our findings suggest ruboxistaurin could reduce proinflammatory and tissue-damaging consequences of neutrophils during disease, and since it has completed phase III trials for other indications without safety concerns, it is a promising and novel therapeutic strategy for COVID-19.


Subject(s)
Lung Diseases , Carcinoma, Renal Cell , Thrombosis , COVID-19 , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL